GGPlotHints.Rmd
This is a collection of plots I find myself making often using data from CO2
and mtcars
. The tidyverse
package is assumed to be loaded, and other packages needed are explcitly shown in code.
By overall:
CO2 %>% ggplot(aes(conc,uptake,col=Treatment)) + geom_point() +
scale_color_manual(values = c("red","green"))
Categories in order unless specified:
data(CO2)
CO2 %>% ggplot(aes(conc,uptake,col=Treatment)) + geom_point() +
scale_color_manual(values = c("chilled"="red","nonchilled"="green"))
GGplot default:
CO2 %>% ggplot(aes(conc,uptake,col=Treatment)) + geom_point() +
scale_color_manual(values = c("#F8766D","#00BFC4"))
Brewer palette:
CO2 %>% ggplot(aes(conc,uptake,col=Treatment)) + geom_point() +
scale_color_brewer(palette = "Dark2")
Type of scale: seq, div, qual
CO2 %>% ggplot(aes(conc,uptake,col=Treatment)) + geom_point() +
scale_color_brewer(type="seq",direction = 1)
Gradient:
CO2 %>% ggplot(aes(conc,uptake,col=conc)) + geom_point() +
scale_color_gradient(low="blue", high="red")
Keep levels even if not in subset plotted:
CO2 %>% filter(Treatment == "chilled") %>%
ggplot(aes(conc,uptake,col=Treatment)) + geom_point() +
scale_color_manual(values = c("#F8766D","#00BFC4"),drop = FALSE)
More info at http://www.sthda.com/english/wiki/ggplot2-colors-how-to-change-colors-automatically-and-manually
Comprehensive tutorial: http://zevross.com/blog/2014/08/04/beautiful-plotting-in-r-a-ggplot2-cheatsheet-3/
library(coefplot)
data("mtcars")
m1 = glm(am == 1 ~ mpg + cyl + disp + wt, data = mtcars, family = "binomial") %>%
coefplot() %>%
print()